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Inferencia Estad́ıstica. Examen III

Ejercicio 1. Sean (X1, . . . , Xn1) y (Y1, . . . , Yn2) m.a.s. de X e Y , variables que
siguen N(µ1, 4) y N(µ2, 5) respectivamente.

a) Si µ1 = 2, µ2 = 3 y sean (X1, . . . , X8) y (Y1, . . . , Y10) dos muestras de tamaño
8 y 10 respectivamente con medias muestrales X, Y , calcular el percentil 99
de

V =
X − Y + 1√√√√√√

8∑
i=1

(Xi −X)2

4
+

10∑
i=1

(Yi − Y )2

5

. (1)

b) Calcular el intervalo de confianza para µ1 − µ2 de menor longitud esperada
uniformemente a nivel de confianza 1 − α. ¿Cómo seŕıa el intervalo si las
varianzas fueran desconocidas pero iguales?

Ejercicio 2.

a) Sea X una v.a. con función de densidad

fθ(x) =
θ

2
x−3/2, x > θ2. (2)

Calcular el UMVUE y determinar para qué valores de n existe. ¿Es eficiente?

b) Sea
fθ(x) = θ T (x)e−θx, x > 0, θ > 0,

en una familia regular según Fréchet–Cramér–Rao.

b1) Sabiendo que1 IX1,...,Xn(θ) =
n

θ2
, calcular E[X] y Var[X].

b2) Sabiendo que
n∑

i=1

T (Xi)

n

es un estimador eficiente de 2/θ, calcular T (x).

Ejercicio 3.

a) Enunciar y demostrar el Teorema de Zehna definiendo previamente los siguien-
tes conceptos: función de verosimilitud de un parámetro, función de verosimili-
tud de una función paramétrica y estimador máximo verośımil para funciones
paramétricas.

b) Calcular la función de verosimilitud de

λ = (θ − 1)2

asociada a una realización muestral cuyo máximo valor es 3 si

fθ(x) = ex−θ, x ⩽ θ, θ > 0.

1Originalmente era IX1,...,Xn
(θ) =

2n

θ2
, pero este dato era incompatible con el ejercicio. Se ha

optado por eliminar el 2 para que todo salga como se espera.
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Inferencia Estad́ıstica. Examen III

Ejercicio 4. Sea (X1, . . . , Xn) una m.a.s. de X v.a. con función de densidad

fθ(x) =
1√

8θ
√
x− 1

, 1 < x < 2θ + 1. (3)

Deducir el test más potente de tamaño arbitrario para contrastar

H0 : θ = θ0 frente a H1 : θ = θ1

siendo θ1 < θ0. Calcular la potencia.

Ejercicio 5.

a) Test de Kolmogorov–Smirnov.

i) Plantear el problema de contraste.

ii) Dar el valor del estad́ıstico.

iii) Enunciar el teorema que justifica su uso.

iv) Ventajas frente al test χ2.

b) Se cuentan el número de tutoŕıas a lo largo de un curso por 50 profesores.
Se quiere contrastar si el número de tutoŕıas por profesor se puede describir
mediante una distribución de Poisson.

Número de tutoŕıas 0 1 2 3 4 5
Número de profesores 2 5 10 14 12 7
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Ejercicio 1. Sean (X1, . . . , Xn1) y (Y1, . . . , Yn2) m.a.s. de X e Y , variables que
siguen N(µ1, 4) y N(µ2, 5) respectivamente.

a) Si µ1 = 2, µ2 = 3 y sean (X1, . . . , X8) y (Y1, . . . , Y10) dos muestras de tamaño
8 y 10 respectivamente con medias muestrales X, Y , calcular el percentil 99
de

V =
X − Y + 1√√√√√√

8∑
i=1

(Xi −X)2

4
+

10∑
i=1

(Yi − Y )2

5

. (1)

Del enunciado del problema sacamos que

Xi ⇝ N(µ1, 4), i = 1, . . . , n1

Yj ⇝ N(µ2, 5) j = 1, . . . , n2

y en este apartado, n1 = 8 y n2 = 10. Buscamos obtener la distribución de V .
Para ello, primero hallamos la distribución del numerador.

Como µ1 = 2 y µ2 = 3, entonces

E[X − Y + 1] = E[X]− E[Y ] + 1 = µ1 − µ2 + 1 = 2− 3 + 1 = 0

Por teoŕıa sabemos que

X ⇝ N(µ1, 4) =⇒ X ⇝ N

(
µ1,

4

n1

)

Y ⇝ N(µ2, 5) =⇒ Y ⇝ N

(
µ2,

5

n2

)
Aśı, asumiendo que (X1, . . . , Xn1) y (Y1, . . . , Yn2) son independientes, entonces

X − Y ⇝ N

(
µ1 − µ2,

4

n1

+
5

n2

)
y se obtiene que

Var(X − Y + 1) = Var(X − Y ) =
4

n1

+
5

n2

=
4

8
+

5

10
=

1

2
+

1

2
= 1

Deducimos entonces que Z = X − Y + 1⇝ N(0, 1)

Falta hallar la distribución del denominador. Usaremos que

(n1 − 1)S2
1

σ2
1

=

n1∑
i=1

(Xi −X)2

σ2
1

⇝ χ2(n1 − 1)
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(n2 − 1)S2
2

σ2
2

=

n2∑
j=1

(Yj − Y )2

σ2
2

⇝ χ2(n2 − 1)

y como estas últimas v.a. son independientes, por serlo las m.a.s. de X e Y ,
podemos aplicar la reproductividad de la distribución χ2:

W =

n1∑
i=1

(Xi −X)2

σ2
1

+

n2∑
j=1

(Yj − Y )2

σ2
2

⇝ χ2(n1−1+n2−1) = χ2(n1+n2−2) = χ2(16)

En estas condiciones puede aplicarse la construcción de la distribución T de
Student

T =
Z√
W/16

⇝ t(16)

y basta notar que

V =
Z√
W

=
Z√

16 ·W/16
=

Z√
16
√

W/16
=

1

4

Z√
W/16

=
1

4
T

La tabla proporcionada para la T de Student cumple que

P (T ⩽ qp) = p ⇐⇒ P (Tn > tn,1−p) = 1− p

donde qp es el percentil p ∈]0, 1[, tn,1−p es el valor tabulado para la fila n y la

columna 1− p, y Tn
not≡ T ⇝ t(n). El percentil 99 de V será consecuentemente

q0,99(V ) =
1

4
t16;0,01 ≈

1

4
· 2,5835 ≈ 0,645875

b) Calcular el intervalo de confianza para µ1 − µ2 de menor longitud esperada
uniformemente a nivel de confianza 1 − α. ¿Cómo seŕıa el intervalo si las va-
rianzas fueran desconocidas pero iguales?

Ya sabemos que

X − Y ⇝ N

(
µ1 − µ2,

4

n1

+
5

n2

)
Y como nos piden el intervalo de confianza (se asume que bilateral), entonces
por el método del pivote visto en teoŕıa, usando como pivote

T (X1, . . . , Xn1 , Y1, . . . , Yn2 ;µ1 − µ2) =
(X − Y )− (µ1 − µ2)√

4

n1

+
5

n2

⇝ N(0, 1)

este debe verificar, por definición de intervalo de confianza, lo siguiente

Pµ1,µ2

λ1 <
(X − Y )− (µ1 − µ2)√

4

n1

+
5

n2

< λ2

 ⩾ 1− α ∀(µ1, µ2) ∈ R2
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para ciertos λ1, λ2 ∈ R. Buscamos aislar la diferencia de medias poblacionales
en el centro de la cadena de desigualdades, luego

λ1 <
(X − Y )− (µ1 − µ2)√

4

n1

+
5

n2

< λ2

⇐⇒ λ1

√
4

n1

+
5

n2

< (X − Y )− (µ1 − µ2) < λ2

√
4

n1

+
5

n2

⇐⇒ Y −X + λ1

√
4

n1

+
5

n2

< −(µ1 − µ2) < Y −X + λ2

√
4

n1

+
5

n2

⇐⇒ X − Y − λ2

√
4

n1

+
5

n2

< µ1 − µ2 < X − Y − λ1

√
4

n1

+
5

n2

La solución para obtener el intervalo de confianza de menor longitud esperada
uniformemente a nivel de confianza 1−α se alcanza con λ1 = −zα/2, λ2 = zα/2,
donde P [Z > zα] > α, y el intervalo de confianza bilateral es(

X − Y − zα/2

√
4

n1

+
5

n2

, X − Y + zα/2

√
4

n1

+
5

n2

)
Si se pidiera cualquiera de los dos unilaterales, entonces

a) Si λ1 = −∞, se sustituye el extremo superior del intervalo bilateral an-
terior por +∞, y zα/2 por zα.

b) Si λ2 = +∞, se sustituye el extremo inferior del intervalo bilateral ante-
rior por −∞, y zα/2 por zα.

Si las varianzas fueran desconocidas pero iguales, entonces el pivote seŕıa

T (X1, . . . , Xn1 , Y1, . . . , Yn2 ;µ1 − µ2) =
(X − Y )− (µ1 − µ2)

Sp

√
1

n1

+
1

n2

⇝ t(n1 + n2 − 2)

donde

S2
p =

(n1 − 1)S2
1 + (n2 − 1)S2

2

n1 + n2 − 2

y como la T de Student tiene las mismas propiedades de simetŕıa respecto
al origen que N(0, 1), entonces el intervalo de confianza bilateral a nivel de
confianza 1− α seŕıa(

X − Y − tn1+n2−2;α/2Sp

√
4

n1

+
5

n2

, X − Y + tn1+n2−2;α/2Sp

√
4

n1

+
5

n2

)
donde P [Tn1+n2−2 > tn1+n2−2;α] = α y nuevamente si se pidiera cualquiera de
los dos unilaterales, entonces

a) Si λ1 = −∞, se sustituye el extremo superior del intervalo bilateral an-
terior por +∞, y tn1+n2−2;α/2 por tn1+n2−2;α.

b) Si λ2 = +∞, se sustituye el extremo inferior del intervalo bilateral ante-
rior por −∞, y tn1+n2−2;α/2 por tn1+n2−2;α.
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Ejercicio 2.

a) Sea X una v.a. con función de densidad

fθ(x) =
θ

2
x−3/2, x > θ2. (2)

Calcular el UMVUE y determinar para qué valores de n existe. ¿Es eficiente?

Buscamos obtener el UMVUE mediante el método alternativo visto en teoŕıa.
Para ello, en primer lugar hay que encontrar un estad́ıstico suficiente y comple-
to T , y luego una función del estad́ıstico h(T ) (denotaremos indistintamente

T
not≡ T (X1, . . . , Xn), para una m.a.s. (X1, . . . , Xn) con n ∈ N fijo) insesgada

en g(θ) = θ (como no se especifica de quién es el UMVUE, se asume que
del parámetro), estimadora y con momento de segundo orden finito. Entonces
h(T ) será el UMVUE.

El estad́ıstico suficiente se calcula por medio del Teorema de Factorización de
Neyman-Fisher. La función conjunta es la siguiente

fn
θ (x1, . . . , xn)

indep.
=

n∏
i=1

fθ(xi)

Suponemos en este punto que θ > 0 (de lo contrario, fθ(xi) = 0 ∀i =
1, . . . , n), y vemos que

xi > θ2 ∀i = 1, . . . , n ⇐⇒ IR+(xi−θ2) = 1 ∀i = 1, . . . , n ⇐⇒ IR+(x(1)−θ2) = 1

de donde se deduce que

fn
θ (x1, . . . , xn) =

n∏
i=1

θ

2
x
−3/2
i IR+(x(1) − θ2) =

(
θ

2

)n n∏
i=1

x
−3/2
i IR+(x(1) − θ2)

Tomando T (X1, . . . , Xn) = X(1) y

h(x1, . . . , xn) =
n∏

i=1

x
−3/2
i , gθ(t) =

(
θ

2

)n

IR+(t− θ2)

Se cumple que

fn
θ (x1, . . . , xn) = h(x1, . . . , xn)gθ(T (x1, . . . , xn)) ∀(x1, . . . , xn) ∈ X n

donde h es independiente del parámetro θ y gθ depende de la muestra solo
a través del estad́ıstico, luego, por el Teorema de Factorización de Neyman-
Fisher, el estad́ıstico T es suficiente.

9
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Ahora, hay que comprobar que este estad́ıstico es completo, lo cual se hará
por definición. Sabemos por teoŕıa que la distribución del mı́nimo es

FT (t) = 1− (1− FX(t))
n =⇒ fT (t) = n(1− FX(t))

n−1fθ(t)

Hallamos ahora la función de distribución de X:

FX(t) =

∫ t

θ2
fθ(x)dx =

∫ t

θ2

θ

2
x−3/2dx =

θ

2

∫ t

θ2
x−3/2dx =

θ

2
·
[
x−1/2

−1/2

]t
θ2

=

θ

2
· (−2

(
t−1/2 − (θ2)−1/2

)
) = −θ

(
1√
t
− 1

θ

)
= −θ

θ −
√
t

θ
√
t

=

√
t− θ√
t

= 1− θ√
t

t > θ2

La función de densidad del estad́ıstico será entonces

fT (t) = n(1− FX(t))
n−1fθ(t) = n

(
θ√
t

)n−1
θ

2
t−3/2 =

nθn

2

t−3/2

t(n−1)/2
=

nθn

2
t−(n/2+1) t > θ2

Sea h una función medible verificando

0 = E[h(T )]
def
=

∫ +∞

θ2
h(t)fT (t)dt =

∫ +∞

θ2
h(t)

nθn

2
t−(n/2+1)dt =

nθn

2

∫ +∞

θ2
h(t)t−(n/2+1)dt

como
nθn

2
̸= 0 ∀n ∈ N, ∀θ > 0, debe ser∫ +∞

θ2
h(t)t−(n/2+1)dt = 0

Por el Teorema Fundamental del Cálculo, podemos considerar una primitiva
H(t) del integrando h(t)t−(n/2+1), y esta cumple, por la Regla de Barrow, que
ĺım

m→+∞
H(m)−H(θ2) = 0 ∀θ > 0. Derivando respecto de θ, se obtiene que

− d

dθ
H(θ2) = 0 ⇐⇒ −h(θ2)(θ2)−(n/2+1)(2θ) = 0 ⇐⇒ −2θ−(n+1)h(θ2) = 0

(∗)⇐⇒ h(θ2) = 0

donde en (∗) se ha usado que −2θ−(n+1) ̸= 0 por ser θ > 0, n ∈ N y −2 ̸= 0.
Equivalentemente,

∀θ ∈ Θ = ]0,+∞[ h(θ2) = 0 ⇐⇒ h(t) = 0 ∀t > 0

(tomando t = θ2 ∈ ]0,+∞[). Por tanto

]0,+∞[ ⊆ {t : h(t) = 0}

y consecuentemente

1 ⩾ P [h(T ) = 0] ⩾ P [T > 0] = 1 =⇒ P [h(T ) = 0] = 1

y entonces por definición concluimos que T es un estad́ıstico completo. Tene-
mos entonces en este punto que T es un estad́ıstico suficiente y completo.
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Ahora hay que buscar un estimador insesgado en g(θ) y de segundo orden
finito. Sea h (independiente de la anterior) función medible tal que

θ = g(θ) = E[h(T )] =
nθn

2

∫ +∞

θ2
h(t)t−(n/2+1)dt ⇐⇒

∫ +∞

θ2
h(t)t−(n/2+1)dt =

2θ

nθn
=

2

nθn−1
=

2

n
θ1−n

Derivamos respecto de θ a ambos lados e igualamos. El miembro izquierdo ya
lo tenemos por el apartado anterior:

−2θ−(n+1)h(θ2)

y el derecho es
2

n
(1− n)θ1−n−1 =

2(1− n)

n
θ−n

Despejamos h(θ2):

−2θ−(n+1)h(θ2) =
2(1− n)

n
θ−n ⇐⇒

h(θ2) =
2(1− n)

−2θ−(n+1)
θ−n =

n− 1

n

θ−n

θ−(n+1)
=

n− 1

n
θ

de donde

h(t) =
n− 1

n

√
t

Por construcción h(T ) es insesgada en g(θ). Vemos que h(T ) también es es-
timador de g(θ), pues Θ = ]0,+∞[, y g(θ) = θ =⇒ g(Θ) = ]0,+∞[. Como
T = X(1) > θ2 > 0 y n−1

n
> 0 si n ⩾ 2, luego h(T ) > 0 si n ⩾ 2. Queda

comprobar que tiene momento de segundo orden finito.

Ello se cumplirá en caso de que E[h(T )2] < +∞:

E[h(T )2]
def
=

∫ +∞

θ2
h(t)2fT (t)dt =

∫ +∞

θ2

(
n− 1

n

)2

t
nθn

2
t−(n/2+1)dt =

θn(n− 1)2

2n

∫ +∞

θ2
t−n/2dt =

θn(n− 1)2

2n

[
t−n/2+1

]+∞
θ2

=

θn(n− 1)2

2n

(
ĺım

m→+∞
m−n/2+1 − θ−n/2+1

)
Y vemos que

E[h(T )2] < +∞ ⇐⇒ ĺım
m→+∞

m−n/2+1 < +∞ ⇐⇒ −n

2
+ 1 < 0 ⇐⇒

−n

2
< −1 ⇐⇒ −n < −2 ⇐⇒ n > 2 ⇐⇒ n ⩾ 3

ya que si n < 3, es decir n ∈ {1, 2}:

11
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a) Si n = 1

ĺım
m→+∞

m−n/2+1 = ĺım
m→+∞

m−1/2+1 = ĺım
m→+∞

√
m = +∞

b) Si n = 2 ∫ +∞

θ2
t−n/2dt =

∫ +∞

θ2
t−1dt =

∫ +∞

θ2

1

t
dt = ln[t]+∞

θ2

y en ambos casos el momento de segundo orden no seŕıa finito (aparte de no
ser h(T ) estimador si n = 1 por lo estudiado antes). Por tanto, por el Teore-
ma de Lehmann-Scheffé, E[h(T )/T ] = h(T ) es el UMVUE para g(θ), y existe
siempre y cuando n > 2 ⇐⇒ n ⩾ 3.

Respecto a la eficiencia, sabemos por un corolario visto en teoŕıa que solo
existen estimadores eficientes para familias de tipo exponencial (además de
regulares en el sentido de Fréchet–Cramér–Rao), pero esta familia no puede
serlo, ya que X = ]−θ2,+∞[, es decir, el conjunto de valores de la variable
depende de θ, luego ya no tendŕıamos que la familia es de tipo exponencial.
Consecuentemente, el UMVUE obtenido no verifica la definición de estimador
eficiente, definido a su vez sobre familias regulares, por lo que no es eficiente.

b) Sea
fθ(x) = θT (x)e−θx, x > 0, θ > 0,

en una familia regular según Fréchet–Cramér–Rao.

b1) Sabiendo que2 IX1,...,Xn(θ) =
n

θ2
, calcular E[X] y Var[X].

Por ser regular según FCR, sabemos que se verifica que

Eθ

[
∂ ln fθ(x)

∂θ

]
= 0

Aśı

ln fθ(x) = ln θ + ln(T (x))− θx =⇒ ∂ ln fθ(x)

∂θ
=

1

θ
− x

La esperanza de X puede obtenerse ya

Eθ

[
1

θ
−X

]
= Eθ

[
∂ ln fθ(x)

∂θ

]
= 0 ⇐⇒ Eθ

[
1

θ

]
−E[X] = 0 ⇐⇒ E[X] =

1

θ

Como

Varθ

[
∂ ln fθ(x)

∂θ

]
= IX(θ)

2Originalmente era IX1,...,Xn
(θ) =

2n

θ2
, pero este dato era incompatible con el ejercicio. Se ha

optado por eliminar el 2 para que todo salga como se espera.
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usando la aditividad de la función de información de Fisher respecto a la
v.a. y respecto a la m.a.s. de la v.a., deducimos que

IX1,...,Xn(θ) = nIX(θ) ⇐⇒ n

θ2
= nIX(θ) ⇐⇒ IX(θ) =

1

θ2

de donde

Varθ

[
1

θ
−X

]
= Varθ(X) = IX(θ) =

1

θ2

b2) Sabiendo que
n∑

i=1

T (Xi)

n

es un estimador eficiente de 2/θ, calcular T (x).

Buscamos aplicar el Teorema de Caracterización de Estimadores Eficien-
tes. Para ello, obtenemos la función conjunta de la m.a.s. de X

fn
θ (x1, . . . , xn)

indep
=

n∏
i=1

fθ(xi)

Se supondrá a partir de ahora que xi ∈ R+ ∀i = 1, . . . , n y θ ∈ R+. De
lo contrario, fθ(xi) = 0 ∀i = 1, . . . , n.

fn
θ (x1, . . . , xn)

indep
=

n∏
i=1

fθ(xi) =
n∏

i=1

θT (xi)e
−θxi = θn

n∏
i=1

T (xi)e
−θxi

ln fn
θ (x1, . . . , xn) = n ln θ +

n∑
i=1

(lnT (xi)− θxi)

∂ ln fn
θ (X1, . . . , Xn)

∂θ
=

n

θ
−

n∑
i=1

Xi = −n

2
·

(
n∑

i=1

2Xi

n
− 2

θ

)

Sea ahora g(θ) = 2/θ. Denotamos T
not≡
∑n

i=1 T (Xi)/n. Como g(θ) es
una función paramétrica derivable y estrictamente monótona (g′(θ) ̸=
0 ∀θ ∈ Θ = R+), el enunciado nos dice que la familia es regular, y
0 < IX(θ) = 2/θ2 < +∞ ∀θ ∈ Θ, por el Teorema de Caracterización
de Estimadores Eficientes, sabemos que T es eficiente si y solo si ∀θ ∈
Θ ∃a(θ) ̸= 0 tal que

Pθ

[
∂ ln fn

θ (X1, . . . , Xn)

∂θ
= a(θ)[T (X1, . . . , Xn)− g(θ)]

]
= 1

y
I(X1,...,Xn)(θ) = a(θ)g′(θ)

Como

∂ ln fn
θ (X1, . . . , Xn)

∂θ
= a(θ)[T (X1, . . . , Xn)− g(θ)] ⇐⇒

13



Inferencia Estad́ıstica. Examen III

−n

2
·

(
n∑

i=1

2Xi

n
− 2

θ

)
= a(θ)[T (X1, . . . , Xn)− g(θ)]

claramente por comparación se obtiene que

n∑
i=1

T (Xi)

n
= T (X1, . . . , Xn) =

n∑
i=1

2Xi

n
, g(θ) =

2

θ
, a(θ) = −n

2

Es claro que T (X1, . . . , Xn) =
∑n

i=1 2Xi/n es un estimador, pues Θ =
R+, g(Θ) = R+, y T (x1, . . . , xn) > 0 ∀(x1, . . . , xn) ∈ X n = (R+)n

y n > 0 ∀n ∈ N. Además, tanto a(θ) como g(θ) verifican todas las
condiciones del teorema, pues

g′(θ) = 2 · (θ−1)′ = 2 · (−θ−2) = − 2

θ2
< 0

porque 2, θ > 0 y a(θ) = −n/2 < 0 ∀n ∈ N, en particular, a(θ) ̸=
0 ∀θ ∈ Θ ∀n ∈ N, y usando la aditividad de la función de información
de Fisher, obtenemos

n

θ2
= I(X1,...,Xn)(θ) = a(θ)g′(θ) = −n

2

(
− 2

θ2

)
=

n

θ2

Por comparación directa

n∑
i=1

T (Xi)

n
= T (X1, . . . , Xn) =

n∑
i=1

2Xi

n
⇐⇒ T (Xi) = 2Xi

de donde T (x) = 2x.

14
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Ejercicio 3.

a) Enunciar y demostrar el Teorema de Zehna definiendo previamente los siguien-
tes conceptos: función de verosimilitud de un parámetro, función de verosimili-
tud de una función paramétrica y estimador máximo verośımil para funciones
paramétricas.

Definición 0.1 (Función de Verosimilitud de un Parámetro). Sea X una v.a.
con distribución en una familia paramétrica de distribuciones, {Fθ, θ ∈ Θ}. Sea
fθ(x) la f.m.p. (caso discreto) ó la f.d.d. (caso continuo) de X. Se considera
X1, . . . , Xn una m.a.s. de X y sea fn

θ (x1, . . . , xn) su f.m.p. ó f.d.d. (respecti-
vamente) conjunta con θ ∈ Θ. Para cada x1, . . . , xn realización muestral, se
define la función de verosimilitud asociada a dichos valores de la muestra como
una función de θ de la siguiente forma:

Lx1,...,xn : Θ −→ R+ ∪ {0}
θ 7−→ Lx1,...,xn(θ) = fn

θ (x1, . . . , xn)

Definición 0.2 (Función de Verosimilitud de una Función Paramétrica). Sea
g : Θ → Λ una función paramétrica. En el contexto de la Definición 0.1, para
cada x1, . . . , xn realización muestral, se define la función de verosimilitud de
λ = g(θ) asociada a dicha realización como:

Mx1,...,xn : Λ −→ R+ ∪ {0}
λ 7−→ Mx1,...,xn(λ) = sup

θ∈g−1(λ)

Lx1,...,xn(θ)

Definición 0.3 (Estimador Máximo Verośımil para Funciones Paramétri-
cas). Un estimador λ̂(X1, . . . , Xn) de λ es estimador de máxima verosimilitud
(EMV) de λ si:

∀(x1, . . . , xn) ∈ X n, Mx1,...,xn(λ̂(x1, . . . , xn)) = máx
λ∈Λ

Mx1,...,xn(λ)

Teorema 0.1 (de Invarianza de Zehna). Sea X una v.a. con distribución
en una familia paramétrica de distribuciones, {Fθ, θ ∈ Θ}. Sea X1, . . . , Xn

una m.a.s. de X. Sea g una función medible. Si θ̂(X1, . . . , Xn) es EMV de θ,
entonces g(θ̂(X1, . . . , Xn)) es EMV de g(θ).

Demostración. Sea λ = g(θ) y, fijada una realización muestral, (x1, . . . , xn) ∈
X n, notemos λ̂ ≡ g(θ̂(x1, . . . , xn)) (de esta manera, θ̂(x1, . . . , xn) ∈ g−1(λ̂)).

Obtenemos la función de verosimilitud de la función paramétrica usando la
Definición 0.2:

Mx1,...,xn(λ̂)
def
= sup

θ∈g−1(λ̂)

Lx1,...,xn(θ)
θ̂∈g−1(λ̂)

= Lx1,...,xn(θ̂(x1, . . . , xn)) (∗)

donde en la última igualdad se ha usado que θ̂(X1, . . . , Xn) es EMV de θ, luego
maximiza la función de verosimilitud de la Definición 0.1. Ahora, vemos que

∀λ ∈ Λ, Mx1,...,xn(λ) = sup
θ∈g−1(λ)

Lx1,...,xn(θ) ⩽ sup
θ∈Θ

Lx1,...,xn(θ) = Lx1,...,xn(θ̂(x1, . . . , xn)) (∗∗)
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la última igualdad nuevamente por ser θ̂(X1, . . . , Xn) es EMV de θ. Deducimos
entonces que

∀λ ∈ Λ, Mx1,...,xn(λ)
(∗∗)
⩽ Lx1,...,xn(θ̂(x1, . . . , xn))

(∗)
= Mx1,...,xn(λ̂)

Es decir, λ̂ = g(θ̂(x1, . . . , xn)) maximizaMx1,...,xn , para cada (x1, . . . , xn) ∈ X n.

Por la Definición 0.3, g(θ̂(X1, . . . , Xn)) es el EMV de λ = g(θ).

b) Calcular la función de verosimilitud de

λ = (θ − 1)2

asociada a una realización muestral cuyo máximo valor es 3 si

fθ(x) = ex−θ, x ⩽ θ, θ > 0.

Vemos que X = ]−∞, θ]. Sea (x1, . . . , xn) ∈ X n tal que x(n) = 3. Calculamos
la función de densidad conjunta, asumiendo a partir de ahora que θ > 0 (en
otro caso, fθ(x) = 0).

fn
θ (x1, . . . , xn)

indep.
=

n∏
i=1

fθ(xi)

Ahora, vemos que x ⩽ θ ⇐⇒ IR−
0
(x− θ) = 1 de donde se deduce que

n∏
i=1

fθ(xi) =
n∏

i=1

exi−θ ̸= 0 ⇐⇒ IR−
0
(xi − θ) = 1 ∀i = 1, . . . , n

y a su vez

xi ⩽ θ ∀i = 1, . . . , n ⇐⇒ x(n) ⩽ θ ⇐⇒ IR−
0
(x(n) − θ) = 1

luego

fn
θ (x1, . . . , xn) =

n∏
i=1

exi−θIR−
0
(x(n) − θ) = e


n∑

i=1

xi − nθ


IR−

0
(x(n) − θ)

Por la Definición 0.1

Lx1,...,xn(θ) = fn
θ (x1, . . . , xn) = e


n∑

i=1

xi − nθ


IR−

0
(x(n) − θ) ∀θ ∈ Θ = R+

El enunciado nos dice que λ = g(θ) = (θ − 1)2. Por la Definición 0.2

Mx1,...,xn(λ) = sup
θ∈g−1(λ)

Lx1,...,xn(θ)

Resolvemos (θ−1)2 = λ para expresar θ expĺıcitamente en función de λ. Vemos
que λ ⩾ 0, y (θ − 1)2 = λ ⇐⇒ θ − 1 = ±

√
λ ⇐⇒ θ = 1±

√
λ.
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A priori habŕıa dos candidatos para cada λ. Sin embargo, por restricciones del
problema, 3 = x(n) ⩽ θ, lo que implica que

θ = 1 +
√
λ ⩾ 3 ⇐⇒

√
λ ⩾ 2 ⇐⇒ λ ⩾ 4

θ = 1−
√
λ ⩾ 3 ⇐⇒ −

√
λ ⩾ 2 ⇐⇒

√
λ ⩽ −2

La última opción no puede darse por ser λ ⩾ 0, por tanto, nos quedamos con
la primera. Aśı, si λ ⩾ 4 (en otro caso, Mx1,...,xn(λ) = 0)

Mx1,...,xn(λ) = Lx1,...,xn(1 +
√
λ) = e


n∑

i=1

xi − n(1 +
√
λ)



Aunque no se pide, como e
∑n

i=1 xi es fijo, y 1+
√
λ es creciente como función de

λ y e−n(1+
√
λ) es decreciente como función de λ, y Mx1,...,xn(λ) ̸= 0 ⇐⇒ λ ∈

[4,+∞[, entonces el máximo se alcanza en el extremo inferior del intervalo,
es decir λ̂(x1, . . . , xn) = 4. Esto puede comprobarse también con el Teorema
0.1 pues Lx1,...,xn(θ) es decreciente en

[
x(n),+∞

[
= [3,+∞[. Por el mismo

razonamiento, θ̂(x1, . . . , xn) = 3, luego λ̂ = (θ̂ − 1)2 = (3− 1)2 = 4.

17
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Ejercicio 4. Sea (X1, . . . , Xn) una m.a.s. de X v.a. con función de densidad

fθ(x) =
1√

8θ
√
x− 1

, 1 < x < 2θ + 1. (3)

Deducir el test más potente de tamaño arbitrario para contrastar

H0 : θ = θ0 frente a H1 : θ = θ1

siendo θ1 < θ0. Calcular la potencia.

Tenemos un contraste de hipótesis simple frente a hipótesis simple, por lo que
sabemos por el Lema de Neyman-Pearson que el Test de Neyman-Pearson será el
más potente de tamaño α, de la forma

φ(X1, . . . , Xn) =


1 si λ(X1, . . . , Xn) > k

γ si λ(X1, . . . , Xn) = k

0 si λ(X1, . . . , Xn) < k

para ciertos γ ∈ [0, 1], k ∈ R y

λ(X1, . . . , Xn) =
fn
1 (X1, . . . , Xn)

fn
0 (X1, . . . , Xn)

Definimos el espacio muestral y el espacio paramétrico, en ambos casos depen-
diente del parámetro θ. Si estamos en H0, entonces X0 = ]1, 2θ0 + 1[, y Θ0 = {θ0}.
Análogamente, si estamos en H1, entonces X1 = ]1, 2θ1 + 1[, y Θ1 = {θ1}. Tenemos
entonces que

Θ = Θ0 ∪Θ1 = {θ0, θ1}

y como θ1 < θ0 ⇐⇒ 2θ1 + 1 < 2θ0 + 1, entonces ]1, 2θ1 + 1[ ⊂ ]1, 2θ0 + 1[ y

X = X0 ∪ X1 = ]1, 2θ0 + 1[ ∪ ]1, 2θ1 + 1[ = ]1, 2θ0 + 1[

Consecuentemente

X n = {(x1, . . . , xn) ∈ Rn : 1 < xi < 2θ0 + 1 ∀i = 1, . . . , n} =

{(x1, . . . , xn) ∈ Rn : 1 < x(1) ∧ x(n) < 2θ0 + 1}

Podemos considerar entonces (x1, . . . , xn) ∈ X n, y obtener la función conjunta
fn
θ (x1, . . . , xn), que es

fn
θ (x1, . . . , xn)

indep.
=

n∏
i=1

1√
8θ
√
xi − 1

Y vemos que
x < 2θ + 1 ⇐⇒ IR−(x− (2θ + 1)) = 1

luego

xi < 2θ + 1 ∀i = 1, . . . , n ⇐⇒ x(n) < 2θ + 1 ⇐⇒ IR−(x(n) − (2θ + 1)) = 1
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Por tanto

fn
θ (x1, . . . , xn) =

n∏
i=1

1√
8θ
√
xi − 1

IR−(x(n) − (2θ + 1)) =

(8θ)−n/2

n∏
i=1

1√
xi − 1

IR−(x(n)−(2θ+1)) = 8−n/2θ−n/2

n∏
i=1

1√
xi − 1

IR−(x(n)−(2θ+1))

Se tiene entonces que

fn
0 (x1, . . . , xn) = 8−n/2θ

−n/2
0

n∏
i=1

1√
xi − 1

IR−(x(n) − (2θ0 + 1)) =

8−n/2θ
−n/2
0

n∏
i=1

1√
xi − 1

∀(x1, . . . , xn) ∈ X n

fn
1 (x1, . . . , xn) = 8−n/2θ

−n/2
1

n∏
i=1

1√
xi − 1

IR−(x(n) − (2θ1 + 1)) ∀(x1, . . . , xn) ∈ X n

y podemos obtener λ(x1, . . . , xn), con (x1, . . . , xn) ∈ X n:

λ(x1, . . . , xn) =
fn
1 (x1, . . . , xn)

fn
0 (x1, . . . , xn)

=

8−n/2θ
−n/2
1

8−n/2θ
−n/2
0

n∏
i=1

1√
xi − 1

IR−(x(n) − (2θ1 + 1))

n∏
i=1

1√
xi − 1

=

8−n/2θ
−n/2
1

n∏
i=1

1√
xi − 1

si x(n) < 2θ1 + 1

0 si x(n) ⩾ 2θ1 + 1

8−n/2θ
−n/2
0

n∏
i=1

1√
xi − 1

Ahora, si x(n) < 2θ1 + 1, simplificamos

���
8−n/2θ

−n/2
1

���
8−n/2θ

−n/2
0

���
����n∏

i=1

1√
xi − 1

���
����n∏

i=1

1√
xi − 1

=

(
θ1
θ0

)−n/2

=

(
θ0
θ1

)n/2

de donde

λ(x1, . . . , xn) =
fn
1 (x1, . . . , xn)

fn
0 (x1, . . . , xn)

=


(
θ0
θ1

)n/2

si x(n) < 2θ1 + 1

0 si x(n) ⩾ 2θ1 + 1

∀(x1, . . . , xn) ∈ X n

Gráficamente, como θ1 < θ0:
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θ1 < θ0

2θ1 + 1 2θ0 + 1
X(n)

f1 = 0

f1 > 0

f0 > 0

f0 = 0

La semirrecta en que f0 = 0, que se corresponde con la condición x(n) ⩾ 2θ0 +1,
no nos interesa ya que (x1, . . . , xn) /∈ X n. Gráficamente, la situación en la que
estamos es la siguiente:

X(n)

λ

2θ1 + 1 2θ0 + 1

(
θ0
θ1

)n/2

1

Tenemos que k ∈

{
0,

(
θ0
θ1

)n/2
}
, luego distinguimos entre estos dos casos.

Si k = 0 , entonces el test será:

φ(X1, . . . , Xn) =


1 si λ(X1, . . . , Xn) > k ⇐⇒ X(n) < 2θ1 + 1

γ si λ(X1, . . . , Xn) = k ⇐⇒ X(n) ⩾ 2θ1 + 1

0 si λ(X1, . . . , Xn) < k nunca

es decir:

φ(X1, . . . , Xn) =

{
1 si X(n) < 2θ1 + 1

γ si X(n) ⩾ 2θ1 + 1

Determinamos γ imponiendo tamaño α:

α
def
= sup

θ∈Θ0

βφ(θ) = sup
θ∈Θ0

Eθ[φ(X1, . . . , Xn)] = Eθ0 [φ(X1, . . . , Xn)] =

1 · Pθ0 [X(n) < 2θ1 + 1] + γPθ0 [X(n) ⩾ 2θ1 + 1]

Para calcular las probabilidades, obtenemos la función de distribución FX(t):

FX(t)
def
=

∫ t

1

1√
8θ
√
x− 1

dx =
1√
8θ

∫ t

1

1√
x− 1

dx =
1√
8θ

[
2
√
x− 1

]t
1
=

2
√
t− 1√
8θ

=

√
t− 1√
2θ
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Sabemos por teoŕıa que, para T = X(n), la distribución del máximo verifica

Pθ[T < t] = FT (t) = (FX(t))
n =

(√
t− 1√
2θ

)n

=

(√
t− 1

2θ

)n

=

(
t− 1

2θ

)n/2

Por lo tanto,

Pθ0 [T < 2θ1 + 1] =

(
θ1
θ0

)n/2

y

Pθ0 [T ⩾ 2θ1 + 1] = 1− Pθ0 [T < 2θ1 + 1] = 1−
(
θ1
θ0

)n/2

de donde

α = 1·Pθ0 [X(n) < 2θ1+1]+γPθ0 [X(n) ⩾ 2θ1+1] =

(
θ1
θ0

)n/2

+γ

(
1−

(
θ1
θ0

)n/2
)

⇐⇒

0 ⩽ γ =

α−
(
θ1
θ0

)n/2

1−
(
θ1
θ0

)n/2
⩽ 1 ⇐⇒ α ⩾

(
θ1
θ0

)n/2

y el test resultante es:

φ(X1, . . . , Xn) =



1 si X(n) < 2θ1 + 1

α−
(
θ1
θ0

)n/2

1−
(
θ1
θ0

)n/2
si X(n) ⩾ 2θ1 + 1

con potencia (en Θ1 = {θ1}):

βφ(θ1) = Eθ1 [φ(X1, . . . , Xn)] = Pθ1 [T < 2θ1 + 1] +

α−
(
θ1
θ0

)n/2

1−
(
θ1
θ0

)n/2
Pθ1 [T ⩾ 2θ1 + 1]

Como Pθ1 [T < 2θ1+1] = 1 y Pθ1 [T ⩾ 2θ1+1] = 1−Pθ1 [T < 2θ1+1] = 1−1 = 0,
entonces

βφ(θ1) = 1
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Si k =

(
θ0
θ1

)n/2

, el test será, mirando nuevamente la misma gráfica

X(n)

λ

2θ1 + 1 2θ0 + 1

(
θ0
θ1

)n/2

1

el que sigue:

φ(X1, . . . , Xn) =


1 si λ(X1, . . . , Xn) > k nunca

γ si λ(X1, . . . , Xn) = k ⇐⇒ X(n) < 2θ1 + 1

0 si λ(X1, . . . , Xn) < k ⇐⇒ X(n) ⩾ 2θ1 + 1

es decir:

φ(X1, . . . , Xn) =

{
γ si X(n) < 2θ1 + 1

0 si X(n) ⩾ 2θ1 + 1

Determinamos γ igual que antes imponiendo tamaño α:

α
def
= sup

θ∈Θ0

βφ(θ) = sup
θ∈Θ0

Eθ[φ(X1, . . . , Xn)] = Eθ0 [φ(X1, . . . , Xn)] =

γ · Pθ0 [X(n) < 2θ1 + 1] + 0 · Pθ0 [X(n) ⩾ 2θ1 + 1] = γ · Pθ0 [X(n) < 2θ1 + 1]

Ya sabemos del caso anterior que

Pθ0 [T < 2θ1 + 1] =

(
θ1
θ0

)n/2

luego

α = γ · Pθ0 [X(n) < 2θ1 + 1] = γ

(
θ1
θ0

)n/2

⇐⇒

0 ⩽ γ =
α(

θ1
θ0

)n/2
= α

(
θ0
θ1

)n/2

⩽ 1 ⇐⇒ α ⩽

(
θ1
θ0

)n/2

y el test resultante es:

φ(X1, . . . , Xn) =

α

(
θ0
θ1

)n/2

si X(n) < 2θ1 + 1

0 si X(n) ⩾ 2θ1 + 1
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con potencia (en Θ1 = {θ1}):

βφ(θ1) = Eθ1 [φ(X1, . . . , Xn)] = α

(
θ0
θ1

)n/2

·Pθ1 [T < 2θ1 +1]+ 0 ·Pθ1 [T ⩾ 2θ1 +1] =

α

(
θ0
θ1

)n/2

· Pθ1 [T < 2θ1 + 1]

Igual que en el caso anterior Pθ1 [T < 2θ1 + 1] = 1, luego

βφ(θ1) = α

(
θ0
θ1

)n/2

Ejercicio 5.

a) Test de Kolmogorov–Smirnov.

i) Plantear el problema de contraste.

Sea una función de distribución espećıfica F0, y sea (X1, . . . , Xn) una
m.a.s. de una v.a. X continua que se distribuye según una función de
distribución F que es completamente desconocida. El constraste a resolver
es {

H0 : F = F0

H1 : F ̸= F0

ii) Dar el valor del estad́ıstico.

El estad́ıstico que se usa para resolver el problema es el estad́ıstico de
Kolmogorov-Smirnov

D(X1, . . . , Xn) = sup
x∈R

|F ∗
X1,...,Xn

(x)− F0(x)|

iii) Enunciar el teorema que justifica su uso.

El test se basa en el teorema de Glivenko-Cantelli:

Teorema 0.2 (de Glivenko-Cantelli). Sea {Xn}n∈N una sucesión de v.a.i.i.d.
con función de distribución común F . Si F ∗

X1,...,Xn
es la función de distri-

bución muestral asociada a la m.a.s. (X1, . . . , Xn), se verifica que F
∗
X1,...,Xn

converge casi seguramente y uniformemente a la función de distribución
de X, F .

P

{
ĺım

n→+∞
sup
x∈R

|F ∗
X1,...,Xn

(x)− F (x)| = 0

}
= 1

iv) Ventajas frente al test χ2.

Se asume que nos referimos al test χ2 de Pearson.
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1) El test de Kolmogorov-Smirnov no necesita hacer particiones de los
datos, mientras que el test χ2 de Pearson śı.

2) Para v.a. continuas, es más apropiado usar el test de Kolmogorov-
Smirnov que el test χ2 de Pearson.

3) BajoH0, si F0 es continua, la distribución del estad́ıstico de Kolmogorov-
Smirnov no depende de F0, mientras que el test χ2 de Pearson es
asintótico.

b) Se cuentan el número de tutoŕıas a lo largo de un curso por 50 profesores.
Se quiere contrastar si el número de tutoŕıas por profesor se puede describir
mediante una distribución de Poisson.

Número de tutoŕıas 0 1 2 3 4 5
Número de profesores 2 5 10 14 12 7

En este caso, como la variable aleatoria es discreta, y tenemos frecuencias, es
más apropiado usar el test χ2 de Pearson. Sea

X ≡ “Número de tutoŕıas por un profesor”

El contraste a resolver es{
H0 : X ⇝ P(λ)

H1 : X ̸⇝ P(λ)
λ > 0

Vemos que la hipótesis nula es compuesta, luego primeramente debemos esti-
mar el valor del parámetro λ. Sabemos que el EMV de λ es la media muestral.
Aśı

λ̂ = X =
0 · 2 + 1 · 5 + 2 · 10 + 3 · 14 + 4 · 12 + 5 · 7

50
=

150

50
= 3

El constraste adaptado seŕıa{
H0 : X ⇝ P(3)

H1 : X ̸⇝ P(3)

Denotemos por N1, . . . , Nk las frecuencias observadas en las k clases conside-
radas, y por

p̂i = Pλ̂(X ∈ Ai), i = 1, . . . , k

las probabilidades teóricas bajo H0 con el parámetro λ estimado por λ̂.

El estad́ıstico de contraste viene dado por

χ̂(N1, . . . , Nk) =
k∑

i=1

(Ni − np̂i)
2

np̂i
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Como el parámetro se ha estimado a partir de los mismos datos, la distribución
asintótica bajo H0 es

χ̂(N1, . . . , Nk)⇝H0 χ
2(k − q − 1)

con q = 1 el número de parámetros estimados.

Por teoŕıa, para poder aplicar el test hay que verificar que

E∗
i = np̂i ⩾ 5 ∀i = 1, . . . , k, n = 50, p̂i = P [X = i] = e−33

i

i!

Primero vamos tanteando (no se ponen a propósito E∗
0 ni E∗

6):

E∗
1 = 50 · e−33

1

1!
≈ 7,47

E∗
2 = 50 · e−33

2

2!
≈ 11,2

E∗
3 = 50 · e−33

3

3!
≈ 11,2

E∗
4 = 50 · e−33

4

4!
≈ 8,4

E∗
5 = 50 · e−33

5

5!
≈ 5,05

En este punto3, como

E∗
0 = 50 · p̂0 = 50 · e−33

0

0!
≈ 2,49

E∗
6 = 50 · e−33

6

6!
≈ 2,52

debemos aqúı agrupar los mayores o iguales que 5. Por ejemplo, podemos
agrupar 0 y 1, y no considerar E∗

6 , y en su lugar, considerar

E∗
⩾6 = nPλ̂(X ⩾ 6) = n(1−Pλ̂(X < 6)) = n−

5∑
i=0

nPλ̂(X = i) = n−
5∑

i=0

E∗
i ≈

50− (2,49 + 7,47 + 11,2 + 11,2 + 8,4 + 5,05) = 4, 19 < 5

que sigue siendo menor estricto que 5, por lo que agrupamos la cola derecha a
partir del 5, y ahora śı

E∗
⩾5 = nPλ̂(X ⩾ 5) = n−

4∑
i=0

E∗
i = 50−

(
5∑

i=0

E∗
i − E∗

5

)
= 50−(45, 81−5, 05) = 50−40, 76 =

9, 24 ⩾ 5

3hay que particionar el espacio muestral de la Poisson, que es N∪{0}, en grupos que verifiquen
las condiciones del test χ2 de Pearson, por eso las consideraciones siguientes.
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Una partición seŕıa la siguiente

A1 = {0, 1}, Ai = {i}, A5 = {⩾ 5}, i = 2, 3, 4

En este caso, k = 5 (número de clases tras agrupar), luego χ̂2(N1, . . . , Nk)⇝
χ2(3). Las frecuencias observadas, denotadas por Oi, i = 1, . . . , k, son

O1 = N0 +N1 = 2 + 5 = 7, O2 = 10, O3 = 14, O4 = 12, O5 = 7

Las frecuencias esperadas son

E1 = E∗
0+E∗

1 ≈ 2,49+7,47 = 9,96, E2 = E∗
2 ≈ 11,2 E3 = E∗

3 ≈ 11,2 E4 = E∗
4 ≈ 8,4

E5 = 50−
4∑

i=1

Ej ≈ 50− (9,96 + 11,2 + 11,2 + 8,4) = 9,24

Obtenemos

χ2
exp =

5∑
i=1

(Oi − Ei)
2

Ei

=
(7− 9,96)2

9,96
+
(10− 11,2)2

11,2
+
(14− 11,2)2

11,2
+
(12− 8,4)2

8,4
+

(7− 9,24)2

9,24
≈ 3,79

El test asintótico de tamaño α es

φ(X1, . . . , Xn) =

{
1 si χ̂2(N1, . . . , Nk) ⩾ χ2

k−1;α

0 si χ̂2(N1, . . . , Nk) < χ2
k−1;α

con

p− valor = PH0 [χ̂
2(N1, . . . , Nk) ⩾ χ2

exp] ≈n→+∞ P [χ2(k − q − 1) ⩾ χ2
exp]

y χ2
exp el valor del estad́ıstico obtenido con la muestra observada. Usando que

k − q − 1 = 3, obtenemos

p− valor ≈ P [χ2(3) ⩾ 3,79] ≈ 0,3

Como el p−valor es grande (respecto a los niveles habituales de significación),
se aceptaH0, por lo que puede suponerse que el número de tutoŕıas por profesor
se puede describir mediante una distribución de Poisson.
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