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Inferencia Estadistica. Examen 111

Ejercicio 1. Sean (Xi,...,X,,) v (Y1,...,Y,,) mas. de X e Y, variables que
siguen N(u1,4) v N(uz,5) respectivamente.

a) Sipy =2, ug =3 ysean (Xi,...,Xg)y (Y1,...,Y)0) dos muestras de tamano

8 v 10 respectivamente con medias muestrales X, Y, calcular el percentil 99

de
X-Y+1
V= il . (1)
8 10
d (X -X)? > (VY)Y
=1 i=1
4 * 5

b) Calcular el intervalo de confianza para p; — ps de menor longitud esperada
uniformemente a nivel de confianza 1 — «a. ;Coémo seria el intervalo si las
varianzas fueran desconocidas pero iguales?

Ejercicio 2.

a) Sea X una v.a. con funcién de densidad

folz) = gx_?’/Q, x> 62 (2)

Calcular el UMVUE y determinar para qué valores de n existe. jEs eficiente?

b) Sea
fo(z) =0T (x)e ™, x>0,0>0,

en una familia regular segin Fréchet—Cramér-Rao.
bl) Sabiendo que' Iy,  x, ()
b2) Sabiendo que

= %, calcular E[X] y Var[X].

n

Z T(X;)

i=1
es un estimador eficiente de 2/6, calcular T'(z).
Ejercicio 3.

a) Enunciar y demostrar el Teorema de Zehna definiendo previamente los siguien-
tes conceptos: funcién de verosimilitud de un parametro, funciéon de verosimili-
tud de una funcién paramétrica y estimador méximo verosimil para funciones
paramétricas.

b) Calcular la funcién de verosimilitud de
A= (0—1)?
asociada a una realizacion muestral cuyo maximo valor es 3 si

fo(x) = e, r<0,0>0.

2n
1Originalmente era I X1,...%,(0) = 2 pero este dato era incompatible con el ejercicio. Se ha

optado por eliminar el 2 para que todo salga como se espera.
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Ejercicio 4. Sea (X1,...,X,) una m.a.s. de X v.a. con funcién de densidad

1
CV8OVr — 1

Deducir el test mas potente de tamano arbitrario para contrastar

fo(z) l<z<20+1. (3)

Hy:0=0, frentea H;:0=260
siendo 6; < . Calcular la potencia.
Ejercicio 5.

a) Test de Kolmogorov—Smirnov.

i) Plantear el problema de contraste.

iii) Enunciar el teorema que justifica su uso.

)
ii) Dar el valor del estadistico.
)
iv)

Ventajas frente al test y2.

b) Se cuentan el nimero de tutorias a lo largo de un curso por 50 profesores.
Se quiere contrastar si el nimero de tutorias por profesor se puede describir
mediante una distribucion de Poisson.

Numero de tutorias ‘O 1 2 3 4 5
Numero de profesores ‘ 2 5 10 14 12 7
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Ejercicio 1. Sean (Xi,...,X,,) v (Y1,...,Y,,) mas. de X e Y, variables que
siguen N(u1,4) v N(uz,5) respectivamente.

a) Sipy =2, ug =3 ysean (Xi,...,Xg)y (Y1,...,Y)0) dos muestras de tamano

8 v 10 respectivamente con medias muestrales X, Y, calcular el percentil 99

de
X-Y+1
V= + . (1)
8 10
d (X -X)? > (VY)Y
=1 =1
1 * 5

Del enunciado del problema sacamos que
XiWN(M1,4), izl,...,nl
Y;WN([I,Q,E)) jzl,...ﬂ’Lg

y en este apartado, ny = 8 y no = 10. Buscamos obtener la distribucion de V.
Para ello, primero hallamos la distribucion del numerador.

Como 1y =2y pue = 3, entonces

EX-Y+1=EX]|-E[Y]+1l=p —p+1=2-3+1=0
Por teoria sabemos que

— 4
XWN(M1,4):>X’V‘->N(/.L1,—)

ni

— )
Y’V")N<ILL2,5):Y’V">N(M2,_)

T2
Asi, asumiendo que (X7, ..., X,,) y (Y1,...,Y,,) son independientes, entonces
_ 4 5}
X—YWN<M1—M27—+—>
s N9

y se obtiene que

- o = = 4 5) 4 5) 1
ar( * ) ar( ) Ty +7’l2 8+ 10 2

Deducimos entonces que Z = X —Y + 1 ~ N(0,1)

Falta hallar la distribucién del denominador. Usaremos que

(nl B 1)32 ZI(XZ — Y)Q

= 2
= ~1
O'% O'% ~ X (nl )
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= ~ x*(ng = 1)

y como estas ultimas v.a. son independientes, por serlo las m.a.s. de X e Y,
podemos aplicar la reproductividad de la distribucién y?:

ni n2
S(Xi=X)P DG -Y)
i= =1
W = L 0_2 +] 0_2 ~ Xz(n1—1+n2—1> = XZ(anng—Q) = X2<16)
1 2

En estas condiciones puede aplicarse la construccién de la distribucion 7' de

Student 7
T = —— t(16>

VW/16

y basta notar que
Z

Z Z
VW J/16-W/16  v/16y/W/16

La tabla proporcionada para la T" de Student cumple que

V:

1
4. /W6

PT'<qy)=p <= P(T,>th1p)=1—p

donde g, es el percentil p €0, 1[, t,,1—, es el valor tabulado para la fila n y la
columna 1 —p, y T, 27 IO t(n). El percentil 99 de V' serd consecuentemente

1 1
q0799(V) = th;o’m ~ Z . 2,5835 ~ 0,645875
Calcular el intervalo de confianza para p; — ps de menor longitud esperada
uniformemente a nivel de confianza 1 — «a. ;Cémo seria el intervalo si las va-
rianzas fueran desconocidas pero iguales?

Ya sabemos que
- 4 )
X—Y”"N(Ml—ﬂ2>—+—)
s N9
Y como nos piden el intervalo de confianza (se asume que bilateral), entonces
por el método del pivote visto en teoria, usando como pivote

(X =Y) = (11— pia)
i 5

ny o

T(Xh...,an,}/i,...,YnQ;/Ll—/LQ): WN(O,].)

este debe verificar, por definiciéon de intervalo de confianza, lo siguiente

by E =T =)

111,12 1 5 <X | Zl—a Y(u,p)€R?
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para ciertos A1, Ay € R. Buscamos aislar la diferencia de medias poblacionales
en el centro de la cadena de desigualdades, luego

X-Y)—(n—rm) _,
4 5

ny ng

4 5) — = 4 5)
= My —F — < (X =Y) = (1 — p2) < Apy/ —+ —
nq No ny No
- /4 5 I — 4 5)
— Y -X+X\N —+—<—(M1—M2)<Y—X+)\2 — + —
n No ny N2
— [ 4 5 N — [ 4 )
— X-Y -\ —+—<M1—M2<X—Y—>\1 — + —
nq T ni N2

La solucién para obtener el intervalo de confianza de menor longitud esperada
uniformemente a nivel de confianza 1 —a se alcanza con A\; = —z4/2, A2 = 242,
donde P[Z > z,] > «a, y el intervalo de confianza bilateral es

— [ 4 5 — — /4 5)
(X—Y—za/Q ——|——,X—Y—|—za/2 ——|——)
nq No n L)

Si se pidiera cualquiera de los dos unilaterales, entonces

A < 2

a) Si A\ = —o0, se sustituye el extremo superior del intervalo bilateral an-
terior por +00, ¥ 24/2 POI Zq.

b) Si Ay = +o0, se sustituye el extremo inferior del intervalo bilateral ante-
rior por —00, Y Za/2 POT Zq.

Si las varianzas fueran desconocidas pero iguales, entonces el pivote seria

(X —Y) — (11— p2)
Sp i_|_i

ni no

T(Xl,...,an,}/i,...,YTLQ;[I,l—[1,2) =

~ t(?’ll —+ ng — 2)

donde
ny — 1)8% + (ng - 1)522

n1+n2—2

S2:(

p

y como la T de Student tiene las mismas propiedades de simetria respecto
al origen que N(0,1), entonces el intervalo de confianza bilateral a nivel de
confianza 1 — « serfa

. [ 4 5 — — 4 5!
(X -Y - tn1+n2—2;a/25p n_l + n_27 X =Y + tnﬁ—ng—?;a/QSp n_l + n_2>

donde P[T,,+ny—2 > tn,+ny—2.0) = @ y nuevamente si se pidiera cualquiera de
los dos unilaterales, entonces

a) Si Ay = —o0, se sustituye el extremo superior del intervalo bilateral an-
terior por +00, ¥ tn;1ny—2:0/2 POT tnyfny—2;a-

b) Si Ay = +o0, se sustituye el extremo inferior del intervalo bilateral ante-
rior por —oo, y tn1+n2—2;a/2 por tn1+n2*2;a-
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Ejercicio 2.

a) Sea X una v.a. con funcién de densidad

fo(x) = gx_g/Q, x> 02 (2)

Calcular el UMVUE y determinar para qué valores de n existe. jEs eficiente?

Buscamos obtener el UMVUE mediante el método alternativo visto en teoria.
Para ello, en primer lugar hay que encontrar un estadistico suficiente y comple-

to T, y luego una funcién del estadistico h(7") (denotaremos indistintamente
not

T = T(Xy,...,X,), para una m.a.s. (Xi,...,X,) con n € N fijo) insesgada
en g(6) = 6 (como no se especifica de quién es el UMVUE, se asume que
del pardmetro), estimadora y con momento de segundo orden finito. Entonces

h(T') serd el UMVUE.

El estadistico suficiente se calcula por medio del Teorema de Factorizacion de
Neyman-Fisher. La funcién conjunta es la siguiente

n

fian, . a,) " I fote:)

=1

Suponemos en este punto que § > 0 (de lo contrario, fa(z;) = 0 Vi =
1,...,n), y vemos que

>0 Vi=1,....n < Li(z,—0°)=1 Vi=1,....,n < Iz+(zq)—0°) =1

de donde se deduce que

n 9 B 0 n _
fo(xy, ... x,) = H 2%i 3/2]R+(x(1) —6?) = <—> sz 3/2IR+ (r@1y — 0°)

Se cumple que

fo(xy, . xn) = h(xy, .. x0)g0(T (21, .y xy)) V(... 2,) € X"

donde h es independiente del parametro 6 y gg depende de la muestra solo
a través del estadistico, luego, por el Teorema de Factorizacién de Neyman-
Fisher, el estadistico 1" es suficiente.
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Ahora, hay que comprobar que este estadistico es completo, lo cual se hard
por definicion. Sabemos por teoria que la distribucion del minimo es

Fr(t)=1—(1—Fx1)" = fr(t) = n(1 — Fx(t))"" fo(t)
Hallamos ahora la funcion de distribucion de X:
! ‘o 0 [ o [2-1/27
Fx(t) = fa:dx:/—x_3/2dx:—/x_3/2dx:—-[ } =
x(®) T ) g2 2 2 2| —1/2],,
11 0 —\/t
(=2 t_1/2 . 02 —1/2 - 9 =_2)=_p—¥" —
(2 (e = @) == (- ) = 07
N B 0

1—— t>6°

Vi Vi

La funcién de densidad del estadistico sera entonces

Fr(t) = n(1 = Fx()" fo(t) = ( %) R

ng" ¢5/? _ ”ent—(n/2+1) PR
2 ti-D/2 2

D

Sea h una funcién medible verificando

o=En(r) ¥ [

e n0" _(nj211)
h(t) fr(t)dt = h(t)Tt dt =

2 92

n +oo
L
2 Jp

0
como nT #0 VneN, V6>0,debe ser

+o0o
/ h(t)t~ /2 gt = 0
02

Por el Teorema Fundamental del Célculo, podemos considerar una primitiva
H(t) del integrando h(t)t~("/>*1D v esta cumple, por la Regla de Barrow, que
lim H(m)— H(6?) =0 V0 > 0. Derivando respecto de 6, se obtiene que

m——+00

d .
—ZH(0) = 0 = —h(*)(6*) 7"/ (20) =0 = 26" Dh(6?) = 0 &L he?) =0
donde en (x) se ha usado que —20~("*Y =£ (0 por ser §# > 0, n € Ny —2 # 0.
Equivalentemente,

V0 € © =]0,+00] h(0?)=0 < h(t)=0 Vt>0
(tomando t = 6% € ]0, +o0[). Por tanto
10, +oo[ C {t: h(t) =0}
y consecuentemente

1> P(T)=0] > P[T > 0] =1= P[h(T) =0] = 1

y entonces por definicién concluimos que 7" es un estadistico completo. Tene-
mos entonces en este punto que 7" es un estadistico suficiente y completo.

10
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Ahora hay que buscar un estimador insesgado en ¢(f) y de segundo orden
finito. Sea h (independiente de la anterior) funcién medible tal que

nf" [T (w2
0= o) = EIND)] = "5 [ bty dt —s

+oo 20 2 2
()2 g = — = ——__ = Zptn
/92 ®) ngn  nonl n

Derivamos respecto de 6 a ambos lados e igualamos. El miembro izquierdo ya
lo tenemos por el apartado anterior:

—26~ " Vn(6%)

y el derecho es
2(1 _ n)el—n—l _ 2<1 — Tl)
n n

e—n

Despejamos h(6?):

_29*("+1)h(¢92) — MQ*" —

n
21—n) n—1 6" n—1
2\ n __ _
h(@ ) o _29—(n+1)6 o -0+ gy 0
de donde
n—1

Por construccién h(T) es insesgada en g(#). Vemos que h(7T) también es es-
timador de ¢(f), pues © = ]0,+oc[, y g(0) = § = ¢(©) = ]0, +oo[. Como
T=Xq>0>0y 2 >0sin>2 luego A(T) > 0sin > 2. Queda
comprobar que tiene momento de segundo orden finito.

Ello se cumplird en caso de que E[h(T)?] < +oc:

sy [ nersaa= [ (”‘1) (10" o gy

02 02 n 2

or(n —1)% [T _ 0"(n—1)2 . _ +o0
5, o

en(n B 1)2 < lim mfn/ZJrl . 9n/2+1>

2n m—r+0o0

Y vemos que

EWT)] < +o0 <= lim m "* < 400 < —g +1<0 <=

m—+00
—g<—1 = nN< -2 <<= n>2 = n=3
ya que si n < 3, es decir n € {1,2}:

11
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a) Sin=1

lim m™™*t = lim m Y*'= lim m =+
m—-+o00 m—-+o00 m——+00

—+o00 400 —+oo 1
/ 2 dt :/ ttdt :/ ~dt = In[t]>*
02 92 92 t

y en ambos casos el momento de segundo orden no seria finito (aparte de no
ser h(T) estimador si n = 1 por lo estudiado antes). Por tanto, por el Teore-
ma de Lehmann-Scheffé, E[h(T')/T] = h(T') es el UMVUE para g(f), y existe
siempre y cuando n > 2 <= n > 3.

b) Sin=2

Respecto a la eficiencia, sabemos por un corolario visto en teoria que solo
existen estimadores eficientes para familias de tipo exponencial (ademés de
regulares en el sentido de Fréchet—-Cramér—Rao), pero esta familia no puede
serlo, ya que X = |—6% 400, es decir, el conjunto de valores de la variable
depende de 6, luego ya no tendriamos que la familia es de tipo exponencial.
Consecuentemente, el UMVUE obtenido no verifica la definicion de estimador
eficiente, definido a su vez sobre familias regulares, por lo que no es eficiente.

b) Sea
folz) =0T (x)e ", x>0, 0>0,

en una familia regular segin Fréchet—Cramér-Rao.

bl) Sabiendo que* Iy,  x,(0) = %, calcular E[X] y Var[X].

Por ser regular segin FCR, sabemos que se verifica que

Ey {m“a—f;@)} 0

Asi
Infop(z) =lnf+In(T'(z) —r —= ———=—-—=x
La esperanza de X puede obtenerse ya

E, E—X} _E, {m“a—fg(x)} _0 e B H—E[X]:o — E[X]:%

Como

v [2254)] _ 1

2n
2Originalmente era Ix, . x, () = 92> pero este dato era incompatible con el ejercicio. Se ha

optado por eliminar el 2 para que todo salga como se espera.

12
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b2)

usando la aditividad de la funcién de informacién de Fisher respecto a la
v.a. y respecto a la m.a.s. de la v.a., deducimos que

n 1

Ix,. . x,(0) =nlx(0) < i nlx(0) < Ix(0) = o
de donde X 1
Vary {5 — X} = Varg(X) = Ix(0) = 7

Sabiendo que

T(X;
3 (n)

i=1

es un estimador eficiente de 2/6, calcular T'(z).

Buscamos aplicar el Teorema de Caracterizacién de Estimadores Eficien-
tes. Para ello, obtenemos la funcién conjunta de la m.a.s. de X

n

fi@n, ) I fot:)

i=1
Se supondrd a partir de ahora que z; € R™ Vi=1,...,ny 6 € R". De

lo contrario, fo(x;) =0 Vi=1,...,n.

n n

f@n o x) SN T] falws) = [[ 0T (wi)e % = 07 [ T(wi)e o

i=1 i=1 =1

In fg'(z1,...,2,) =nlnb + Z(lnT(zi) — Ox;)
i=1

n

Ol fi(Xy,.... X)) n S~ n 2X; 2
Rl 0 ;XZ_ 2 Zn 0

=1

Sea ahora g() = 2/0. Denotamos T Ed Sor T(X;)/n. Como g(0) es
una funcién paramétrica derivable y estrictamente mondtona (g¢'(0) #
0 VO € © = R"), el enunciado nos dice que la familia es regular, y
0 < Ix(0) = 2/6*> < 400 V6 € O, por el Teorema de Caracterizacién
de Estimadores Eficientes, sabemos que T es eficiente si y solo si VO €

© Ja(f) # 0 tal que

81nf9"(X1,...,Xn)_ —
00

Py

Como

Ol f2 (X1, ..., Xn) _
90
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n
=1

_g(éjz&_g):dmﬁu;”wx»—mm

claramente por comparacién se obtiene que

: n : n 0’
i=1 =1

Es claro que T(Xy,...,X,) = Y1, 2X;/n es un estimador, pues © =
R, g(©) = Rty T(z1,...,2,) > 0 Y(z1,...,2,) € X" = (RT)"
yn >0 ¥n € N. Ademds, tanto a(f) como g(¢) verifican todas las
condiciones del teorema, pues

/ —1\7 _ 2
JO) =2 (07 =2 (07 =~ <0
porque 2,0 > 0y a(f) = —n/2 < 0 Vn € N, en particular, a(f) #

0 V8e© VneN,yusando la aditividad de la funcién de informacion
de Fisher, obtenemos

ZT<X1'> _T(X. X :szi s T(X) = 2X,

de donde T'(x) = 2.

14
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Ejercicio 3.

a) Enunciar y demostrar el Teorema de Zehna definiendo previamente los siguien-
tes conceptos: funcién de verosimilitud de un parametro, funcion de verosimili-
tud de una funcién paramétrica y estimador méximo verosimil para funciones
paramétricas.

Definicién 0.1 (Funcién de Verosimilitud de un Parametro). Sea X una v.a.
con distribucién en una familia paramétrica de distribuciones, {Fp, 0 € ©}. Sea
fo(x) la fm.p. (caso discreto) 6 la f.d.d. (caso continuo) de X. Se considera
Xi,..., X, una m.a.s. de X y sea fi(z1,...,2,) su fm.p. 6 f.d.d. (respecti-
vamente) conjunta con § € ©. Para cada zy,...,z, realizacién muestral, se
define la funcion de verosimilitud asociada a dichos valores de la muestra como
una funcién de 6 de la siguiente forma:

Lx1,...,z @ — R+ U {0}
9 — Litl,-n,xn(e) = fél(l’l, e 73:71)

n *

Definicién 0.2 (Funcién de Verosimilitud de una Funcién Paramétrica). Sea
g : © — A una funcién paramétrica. En el contexto de la Definicion 0.1, para
cada z1q,...,x, realizacién muestral, se define la funcion de verosimilitud de
A = g(0) asociada a dicha realizacién como:

My, . o A — RTU{0}

A — Mm,--.,xn()‘): sup L$17~--,1‘n<0)
0cg=1(N)

n *

Definicién 0.3 (Estimador Maximo Verosimil para Funciones Paramétri-
cas). Un estimador A\(X7,...,X,) de X es estimador de mdzima verosimilitud

(EMV) de A si:

V(x1,...,x,) € X", Mml,...,mn<5\(x1> CeTy)) = Iiléﬁ( My, ..wn(N)
€
Teorema 0.1 (de Invarianza de Zehna). Sea X wuna v.a. con distribucion
en una familia paramétrica de distribuciones, {Eg,@ € 0}. Sea Xy,..., X,
una m.a.s. de X. Sea g una funcion medible. Si 0(X1,...,X,) es EMV de 6,

~

entonces g(0(Xy,...,X,)) es EMV de g(6).

Demostracion. Sea X\ = g(f) y, fijada una realizacién muestral, (xy,...,x,) €

~ ~

X", notemos A = g(0(x1, ..., x,)) (de esta manera, 0(xy, ..., z,) € g~*(N)).

Obtenemos la funcién de verosimilitud de la funcién paramétrica usando la
Definiciéon 0.2:

~, de dcg—1(\ N
Miron) S sup Ly () =" Loy (B2, 2)) (%)
feg—1(N)

donde en la iltima igualdad se ha usado que é(Xl, ..., X,) es EMV de 0, luego
maximiza la funcién de verosimilitud de la Definicién 0.1. Ahora, vemos que

~

VAXeAN, My 2.(N)= sup Ly .. (0)<supLy .. (0) =Ly o (6(z,...
9cg—1(\) 9coO

15
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la ultima igualdad nuevamente por ser é(X 1,---,Xpn) es EMV de 0. Deducimos
entonces que

VAEA, My 0N < Loya,(0(21, . 20)) = May 0 (V)

Es decir, \ = g(é(a:l, ..., T,)) maximiza M,, . ,paracada (zy,...,x,) € X™.

Por la Definicién 0.3, g(6(X1,...,X,)) es el EMV de A = g(0). O

77777

Calcular la funcion de verosimilitud de
A=(0—-1)°
asociada a una realizacion muestral cuyo maximo valor es 3 si
fo(z) =", x<0,0>0.
Vemos que X = |—o00,0]. Sea (x1,...,2,) € X" tal que (,) = 3. Calculamos

la funcién de densidad conjunta, asumiendo a partir de ahora que 6 > 0 (en
otro caso, fp(z) =0).

Fo(zn, ... an) P H Fo(:)

Ahora, vemos que z < 0 <— IRO—(x —6) =1 de donde se deduce que

Hfg(xi):Hewi_g%O = L-(ri—0)=1 Vi=1,....n
i=1

i=1
y a su vez
<60 Vi=1, ,n(z)x(n)gﬁb)lﬂ{a(x(n)—ﬁ)zl
luego
fir, . wn) = [ e I (2 —0) = e \i=t I, (xm) — 0)
i=1

Por la Definicién 0.1

Zn:xi —nb

Lml Zn(e):fél(xlv'“axn):@(i_l )IRO(x(n)@) V@E@zR*

.....

El enunciado nos dice que A = g(6) = (§ — 1)?. Por la Definicién 0.2

Resolvemos (§—1)? = \ para expresar 6 explicitamente en funcién de X. Vemos

quer>0,y (A—12=) <= —-1=+V\ <= =1+

16
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A priori habria dos candidatos para cada A. Sin embargo, por restricciones del
problema, 3 = z(,) < 6, lo que implica que

H=14+VA>23 < VA>2 < \A>4

B=1-VA>3 <= —VA>2 «— /A< -2

=
La tultima opcién no puede darse por ser A > 0, por tanto, nos quedamos con
la primera. Asi, si A > 4 (en otro caso, My, ., () =0)

ixi —n(l+ \/X))
My, o 2n(A) = Ly 0, (1+ V) = @(i—l

Aungque no se pide, como eXi=1% es fijo, v 141/ es creciente como funcién de
Ay e (VY o5 decreciente como funcién de A, y My, 2n(A) #0 <= X€
[4, 4+00[, entonces el maximo se alcanza en el extremo inferior del intervalo,
es decir S\(xl, ..., Ty) = 4. Esto puede comprobarse también con el Teorema
0.1 pues Ly, .,(0) es decreciente en [x(,),+00[ = [3,400[. Por el mismo

razonamiento, 0(xy, ..., x,) =3, luego A= ( —1)2 = (3 —1)> = 4.

17
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Ejercicio 4. Sea (X1,...,X,) una m.a.s. de X v.a. con funcién de densidad

fg(ﬁ):; l<z<20+1. (3)

V80V =T

Deducir el test mas potente de tamano arbitrario para contrastar
Hy:0=0, frentea H;:0=260
siendo #; < . Calcular la potencia.

Tenemos un contraste de hipotesis simple frente a hipotesis simple, por lo que
sabemos por el Lema de Neyman-Pearson que el Test de Neyman-Pearson serd el
méas potente de tamano «, de la forma

1 Si)\(Xl,...,Xn>>k'
(X, ..., Xn) =387 siANXy,...,X,) =
0 siAXy,...,X,) <k

para ciertos v € [0,1], k € Ry

Xy, ..., X,)
fouXy, ..., X,)

Definimos el espacio muestral y el espacio paramétrico, en ambos casos depen-
diente del pardmetro 6. Si estamos en Hy, entonces Xy = |1,20p + 1], y ©g = {6p}.
Andlogamente, si estamos en Hj, entonces X; = |1,20; + 1], y ©; = {6;}. Tenemos
entonces que

)\(Xl,...,Xn) ==

©=0pU0; ={b,0:}
y como 0 < 0y <= 26, +1 < 26y + 1, entonces |1,260; + 1] C 1,200+ 1]y
X=X UX =]1,200 +1[{U]1,20, + 1[ =]1,200 + 1]
Consecuentemente
X' ={(x1,...,2p) ER": 1 <2; <20p+1 Vi=1,...,n} =

{(a:l,...,xn)ER”:1<x(1) N Ty <290+1}

Podemos considerar entonces (x1,...,2,) € X™, y obtener la funcién conjunta
fo(xy, ..., x,), que es

zndep

A CT H\/_\/T

Y vemos que
r<20+1 <= L-(z—(20+1)) =1

luego

T, <20+1 Vi=1,....n < 243)<20+1 <= Ip-(rp) —(20+1)) =1

18
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Por tanto

n B 1
fe(asl,...,xn)—g—\/@ —

n/2
RIS

Se tiene entonces que

[R, (ZE(n)

In- (2 — (204+1)) = 8 /297 "/ H
=1

—(20+1) =

\/1— () —(20+1))

PR |
"y, xy) = 8202 In- (20 — (200 + 1)) =
fO(xla ,Q?) 0 EWR (fE() ( 0+ ))
P |
s20," 1 V(x1, ..., 2,) € X"
i Vi — 1
i, .. xy) = 8720, w (T — (20, + 1)) Y(zy,...,2,) € A"
i 11 f
y podemos obtener A(z1,...,x,), con (z1,...,x,) € X™:
... 2n) = 1 (21, sn)
fol@r, ... @)
8/20; n/2 si x < 20; +1
T fo () — (261 + 1)) H“ v
1R (T(n) — (201
g2 i =1 Si T > 20, + 1
—n —n/2 n = n
8 /280 H 1 8‘"/2Q n/2H 1
i Vi — 1 i Vai— 1
Ahora, si x(,) < 26, + 1, simplificamos
o1
WGI—TL/Q 2 Jx; — 1 _ é fn/2_ @ n/2
g=mr2g 2 E” 1 B 0,
1 r; — 1
de donde
n/2

s om) (L) e <2041

)\(ml,...,xn):ﬁz 01 () ! V(ml,...,xn)GX"
Tiye. Ty
0 ATy e 0 sl ) =201 + 1

Graficamente, como 61 < 6:

19
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| =0
>0 | :
| | "
20, + 1 1200 + 1
Jo>0 ]
fo=0

La semirrecta en que fo = 0, que se corresponde con la condicién z,) > 205 + 1,
no nos interesa ya que (xi,...,x,) ¢ X". Gréficamente, la situacién en la que
estamos es la siguiente:

A
60 n/2
— EEEE——
01

1

. X(n)
20; + 1 200+ 1

0o
01
Si , entonces el test sera:

I osiMXy,..., X)) >k <<= X <20, +1

QO(Xl,...,Xn): y Sl)\(Xl,,Xn>:]€ <~ X(n)>261+1
0 siAXy,...,X,) <k nunca

n/2
Tenemos que k € {O, < ) }, luego distinguimos entre estos dos casos.

es decir:

1 si Xy <20, +1
<)0(X177X1’L):{ =) '

Y si X(n) = 201+1

Determinamos «y imponiendo tamano a:

de
o sup B,(0) = sup Eylp(X1, ..., Xn)] = Eoylp(X1,.... X,)] =
0cOq €6

1- Pgo [X(n) < 20, + 1] + ”)/pgo [X(n) > 20, + 1]
Para calcular las probabilidades, obtenemos la funcién de distribucién Fx (t):
t t
def 1 1 / 1 1 ¢ 2Vt—1 Jt—1
O | v T Ve ) e T e N AN Y7
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Sabemos por teorfa que, para T' = X(,), la distribucién del maximo verifica

Por lo tanto,

01

n/2
P90 [T < 20, + 1] = (0—)
0

y
91 n/2
PHO[T>201+1]:1—P90[T<201+1]:1—(9)
0

de donde

0 n/2 0 n/2
a = 1-Py[X(ny < 201+1]47 Py [ Xy = 201 +1] = (9—1) + (1 - (9—1) —
0 0

() |
90 (el)n 2
0 =—F= <1l <= az=2|—
Y , 01 n/2 90
0o
y el test resultante es:
(1 si X(n)<291+1

1
(X1, X)) = a‘(&‘)
SO 17--‘7 n 0 /2 SiX(n)>201+1
(&)
1 (2
\

con potencia (en ©; = {6;}):

(el)n/Q
“~\4
5@(91) = E91[()0<X17 ce 7Xn>] = P91[T <20, + 1] + ﬁPQI[T > 201 + 1]
1— (2
i)

COIIIOP@l[T<261+1] = 1yP91[T> 291+1] = 1—P91[T<291+1] = 1—1:0,

entonces

Bw(el) =1
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Silk = (—0) , el test sera, mirando nuevamente la misma gréafica

01
A
@ n/2 -
0
1

. X(n)
20, + 1 200+ 1

el que sigue:

si A(Xy,...,X,) > k nunca
O(X1,..., Xp) =47 siAXy,.. .. X)) =k <= X <20, +1
stAXy,.. ., Xn) <k = X4 =20, +1

)

es decir:

si Xi < 20, + 1
(X1, X)) =4 Tomsn
0 si Xy =20 +1

Determinamos v igual que antes imponiendo tamano «:

de
o sup B,(6) = sup Eplp(Xi,..., X)) = Ep[o(X1,..., X,)] =
0€Bg JS(Ch}

- PQO[X(TL) < 201 + 1] +0- PQO[X(n) > 20, + 1] =~ PQO[X(n) < 201 + 1]

Ya sabemos del caso anterior que

91 n/2
P@O[T < 20; + 1] = (—)
)
luego
81 n/2
Oé—’ypgo[X(n)<201+1]:’y(e—) <
0
n/2 n/2
0<7:L=a @ <1 <= a< é
91 6)()

ﬁ n/2
0o

y el test resultante es:

(p(Xl,...,Xn> =
0 si X(n) > 20, +1

22
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con potencia (en ©; = {6,}):

n/2
690(91) = E91[90(X17'--:Xn)] = <_> 'P91[T < 291+1]+0P91[T > 291_'_1] =

(1/(0—) PQI[T<201+1]
1

Igual que en el caso anterior Py, [T < 26, + 1] = 1, luego
0 n/2
5,00 = ()
1

a) Test de Kolmogorov—Smirnov.

Ejercicio 5.

i) Plantear el problema de contraste.

Sea una funcién de distribucién especifica Fy, y sea (Xi,...,X,) una
m.a.s. de una v.a. X continua que se distribuye segin una funcién de
distribucién F' que es completamente desconocida. El constraste a resolver
es

HO:F:FO
HliF#FO

ii) Dar el valor del estadistico.

El estadistico que se usa para resolver el problema es el estadistico de
Kolmogorov-Smirnov

D(X17 s 7Xn) = sup ’F)*(h,Xn(a:) - FO('I)‘

zeR

iii) Enunciar el teorema que justifica su uso.

El test se basa en el teorema de Glivenko-Cantelli:

Teorema 0.2 (de Glivenko-Cantelli). Sea { X, },en una sucesion de v.a.i.i.d.
con funcién de distribucion comin F. St Fy,  « es la funcion de distri-

e . N *
bucion muestral asociada a la m.a.s. (Xy, ..., X,), se verifica que Fx,  x,
converge casi sequramente y uniformemente a la funcion de distribucion
de X, F.

P{ lim sup |F)"}1Xn(x) — F(z)| = 0} =1

n——+o00 z€R

iv) Ventajas frente al test x2.

Se asume que nos referimos al test y? de Pearson.
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1) El test de Kolmogorov-Smirnov no necesita hacer particiones de los
datos, mientras que el test x? de Pearson sfi.

2) Para v.a. continuas, es mas apropiado usar el test de Kolmogorov-
Smirnov que el test x? de Pearson.

3) Bajo Hy, si Fj es continua, la distribucién del estadistico de Kolmogorov-
Smirnov no depende de F,, mientras que el test x? de Pearson es
asintotico.

b) Se cuentan el nimero de tutorias a lo largo de un curso por 50 profesores.
Se quiere contrastar si el nimero de tutorias por profesor se puede describir
mediante una distribucién de Poisson.

1 2 3 4 5
5 10 14 12 7

Numero de tutorias ‘ 0
Numero de profesores ‘ 2

En este caso, como la variable aleatoria es discreta, y tenemos frecuencias, es
mas apropiado usar el test x? de Pearson. Sea

X = “Numero de tutorias por un profesor”

El contraste a resolver es

{HO:XwP(A) .

Vemos que la hipdtesis nula es compuesta, luego primeramente debemos esti-
mar el valor del parametro A. Sabemos que el EMV de )\ es la media muestral.

Asi
I 0'2+1-5+2~10+3~14+4'12+5-7:@:3
50 50
El constraste adaptado seria
Hy: X 4 P(3)
Denotemos por Ny, ..., N, las frecuencias observadas en las k clases conside-

radas, y por

pi=P(Xed), i=1,...k
las probabilidades tedricas bajo Hy con el parametro A estimado por A
El estadistico de contraste viene dado por

2
- npz

Mw

LN,

=1
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Como el parametro se ha estimado a partir de los mismos datos, la distribucién
asintotica bajo Hy es

)A((Nl, e ,Nk) ~ Hop XQ(IC —q — 1)

con ¢ = 1 el nimero de parametros estimados.

Por teoria, para poder aplicar el test hay que verificar que

3i
Ef=np;>5 Vi=1,...,k, n=50, ﬁi:P[X:z‘]:e‘?’,—‘
2!

Primero vamos tanteando (no se ponen a propésito Ej ni Ef):

1

3
Er=50- e_SF ~ 747

2

3
* L3 ~
ES=50-¢ o 11,2

3

3
* L3 ~
E5=50-¢ ETH 11,2

4

3
* L3 ~
Bi =50 x84

35
B =50- e—% ~ 5,05

En este punto®, como
30

Ej =50 pg =50 - 6—35 ~ 2,49

6
6!

E; =50- 632 ~ 2,52

debemos aqui agrupar los mayores o iguales que 5. Por ejemplo, podemos
agrupar 0 y 1, y no considerar Eg, y en su lugar, considerar

5 5
Efg=nP(X >6)=n(1-P(X <6)=n-» nP(X=i)=n-» E ~
=0

=0
50 — (2,49 4+ 747+ 11,2+ 11,2+ 8,4+ 5,05) = 4,19 < 5

que sigue siendo menor estricto que 5, por lo que agrupamos la cola derecha a
partir del 5, y ahora si

4 5
Bty =nPy(X > 5) =n—Y Ef =50- (Z Ef — E5> — 50—(45,81—5,05) = 50—40, 76 =
=0 =0

9,24 > 5

3hay que particionar el espacio muestral de la Poisson, que es NU {0}, en grupos que verifiquen
las condiciones del test x? de Pearson, por eso las consideraciones siguientes.

25



Inferencia Estadistica. Examen 111

Una particién seria la siguiente
A ={0,1}, A, ={i}, As;={>=5}, i=23,4

En este caso, k = 5 (ntimero de clases tras agrupar), luego Y?(Ny, ..., Ni) ~
x%(3). Las frecuencias observadas, denotadas por O;,7 = 1,... k, son

O =Nog+ N, =24+5=7, O;=10, O3=14, O4=12, O5=7
Las frecuencias esperadas son

E1 = ES—FET ~ 2,49+7,47 = 9,967 E2 = E; =~ ]_1,2 E3 = E; =~ ]_1,2 E4 = EZ ~ 8,4

4
Es=50—Y E;~50—(9,96+11,2+112+84) =9,24

i=1
Obtenemos

s = (0i—E)?  (7-996) (10-112)2 (14—112)> (12— 84)
Xemp - Z

LB 996 T2 T2 T 84
(19207
924 7

El test asintotico de tamano « es

(X,
con
p— valor = PHO[>22<N17 s 7Nk) > szp] ~n—+o0 P[XQ(k —q— 1) > szp]

y Xﬁxp el valor del estadistico obtenido con la muestra observada. Usando que
k —q— 1= 3, obtenemos

p —valor =~ P[x*(3) > 3,79] ~ 0,3

Como el p—walor es grande (respecto a los niveles habituales de significacién),
se acepta Hy, por lo que puede suponerse que el nimero de tutorias por profesor
se puede describir mediante una distribucion de Poisson.
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